kazuo kawasaki's official blog

Posts Tagged ‘光造形システム’


「正しい進化は、わが国が主導する!」


   


     7月 6th, 2013  Posted 12:00 AM

本日、阪大で「3D-PRINTING」の講演会をします。
私は阪大出身の若手エンジニアリングデザイナーから依頼。
阪大出身者であり、「次世代を開花する」職能は応援します。
そして、ほとんど大疑問だった「3D-PRINTING」ですから、
光造形・ラピッドプロトタイピングから3Dを始めた私には、
「MAKERS」を読んだときに実務経験無しを全否定してました。
案の上、米国での大統領の表明から大流行には真偽不確でした。
そのまま日本もこのブームにこそ、
いわゆるベンチャー企業はこれだという風潮が起こりました。
家庭用・業務用・工業用・研究用が全てを包含したブームゆえ、
とうとう、わが国の大企業が「金型まで可能ゆえ云々」とは、
これは日本の知性の浅薄さを露呈してしまうと直感しました。
まず、ベンチャーと言って進歩した企業は限定されています。
しかも、国内の大企業、その経営者にデザイン理念がありません。
だからこそ、ベンチャーに期待をかけますから、
「誤解が蓄積」すればするほど、
いわゆる「3D-PRINTINGのイノベーション」情報は錯乱します。
そこで、阪大では3人の教授たちは「教示の姿勢」で、
このイベントを引き受けた次第です。
まず、断っておきます。
私が大学人になって掲げてきた三つの革命は当たっています。
         ●光重合革命
         ●遺伝子革命
         ●電磁波革命
この全てが「3D-PRINTING」に適合しています。
だから、「3D-PRINTING」の時代は必ず来るでしょう。
だからといって、
3D-PRINTERはインクジェット方式だけではありません。
大事なことは私が光造形システムで試行してきたことの欠落です。
それは、「何を進化させるか」です。
あたかも、これまでの進化ではなくて突然変異を起こすことです。
本日、私は専門家チームも来阪してもらいました。
「3D-PRINTING」の技術とデザインは阪大が中核になります。


目次を見る

「光造形は日本で発明されて、今やナノテク世界で進化している」


   


     5月 11th, 2013  Posted 12:00 AM

3Dプリンターの商業的な流行には要注意です。
購入しても使用出来ない商業主義が先んじています。
地方行政の研究機関や研究心の浅い大学が装置を買っています。
だからこそ、私はなんとしても「光造形」を知ってほしいのです。
この原理原則だった「光造形」は日本の発明だったということ、
これは忘れられていますから、
その発明の経過と、日本より英国で評価されて、
商業化は米国だったことに私たちは留意しておくべきと考えます。
「小玉秀男」博士の発案であり、
国内評価が遅れたことは日本の特許制度の脆弱さを
あらためて再思考しなければいけません。
その当時は、半導体生産技術・印刷技術・CADの三つが基本。
3次元立体映像を紫外線硬化樹脂で立体地図から始まります。
彼は、日本よりも英国・欧州で評価されましたが、
米国は即刻、光造形の企業を設立して商業的な成果を上げます。
この企業が今では光造形システムをほとんど商業成果を独占。
しかし、日本では、彼の発案を鋳造技術・金型モデル生産で、
様々な学術発展が国際化=米国流になってしまいます。
それでも、光造形(3次元立体映像を紫外線硬化)は、(左)
*マイクロナノテクノロジーでフォトニクスとオプトニクスの
根幹技術になっていきます。
フォトニクス関連では、大阪大学の河田聡教授が
サイエンス誌に「牛」の立体像を発表し、
ギネス登録にまでなります。(中央)
彼が私を公立大学の教員にもかかわらず、
「デザイン」を阪大に特任教授で国内初で受け入れてくれました。
オプトニクス関連は、生体医療を対象にした世界最小ロボットや、
ポンプ形式と呼ばれるナノテクノロジーでのモーターまでを
東京大学の生田幸士教授が次々と成果を上げ続けています。
彼が名古屋大学時代には、
二人で「国立と公立の単位互換制度」を創立した仲です。
今でも、この二人にはなんでも相談ができます。
私の親友だということはとても幸運なことですから、
彼らの研究を間近で見られるということです。
さらに幸いなことは、この両名の先生は、
お互いが協働でそれぞれの次世代交換をして、
それぞれの専門領域で小玉博士の提案を現代化し、
「光造形の真骨頂を国際化」していることです。
両名ともに、若くして紫綬褒章者です。
それよりももっと彼らの研究を政府が支援すべきだと思います。
したがって、
3Dプリンターのブーム評価を私は聞きたいと思っています。
私はあえてこのBLOGを書いてから二人に3Dプリンターのことを、
聞き出してみたいと考えているのです。

*物質をナノメートル (nm、1 nm = 10-9m)の
原子や分子サイズで制御する技術
両手で大きな輪をつくればこれが髪の毛一本=0.05mmから0.15mmで、
親指のツメが「血小板」サイズ=1~4μnmです。


目次を見る

「3Dプリンターは自己増殖する起点を修正する」


   


     4月 30th, 2013  Posted 12:00 AM

光造形システムが落ち着き始めた頃に、
手の上の温度で融解する程度だったサンプルが、
3Dプリンターとなって、
その将来性が云々されるようになりました。
「RepRap Project」が米国で一躍注目されて、
簡単に単純な構成の装置でプリントアウト出来るようになりました。
しかし、あくまでも素材は0.6mmの素材が
まさにソリッドワイヤーのままですから、
トポロジー形態を作成するには、
ここでもサポートとノズルへのプログラム化が必要です。
国内でも早速3Dプリンターを取り入れたカフェや団体が登場しています。
私は、あくまでもサポートと素材に拘っています。
日本流のアレンジメントを創出し、
新素材やその供給方法を一般化しなければなりません。
3Dプリンターは「パンドラの箱」とまで大仰な表現が登場し、
この装置での商売が始まってきましたが、
欠落していることがあり過ぎるようです。
まず、これを本当に使いこなす「技」は、
本当に限定された人物だけしか使えないことや、
肝心のネットワークでのバーチャルシステムも出来てはいません。
米国流は必ず破綻する時間が早いはずです。
光造形システムのアイディアも、
元来は日本人だったのです。
大統領が3Dプリンターの実際も分からずに
声明するのは選挙のためにすぎません。
やはり、これが「自己増殖するシステム」であり、
そのための「新素材」であり、
供給さえも自己増殖させるサーバーも、
すべからくこの日本で完成させる必要があるでしょう。
とりあえず、米国でのアイディアを日本で根本の改革を成し遂げ、
3Dプリンターで革新させる「技術」そのものを、
「Made in Japan」の確実性と信頼性を築くべきでしょう。
私はそのことを可能にする少数の人たちを結びつけます。
その進展に期待をしてください。


目次を見る

「一筆書き・問題・立体化できるだろうか」


   


     4月 29th, 2013  Posted 12:00 AM

ブレーゲルという川に七つの橋があるそうです。
その七つの橋を2度通らないというルールで、
出発点はどこでもいいけれど、全ての橋を渡って、
元の場所に戻ってこれるだろうか、
という伝統的な問題があります。
これは「ケーニヒスベルク(現・カリーニングラード)の問題」
という名前の「一筆書き問題」です。
名古屋市立大学当時に、
大学院では
「光造形システムでのトポロジー形態の制作」に関わる修士論文で、
必ずまず、「オイラーの解」として冒頭に記載されました。
それは、レーザー光線で液体のエポキシ樹脂を形態制作する手法で、
特に「形態を支えるサポートづくり」を考える
普遍的な思考を追随するのに、
基本的な思考方法に至るためのトレーニングになりました。
左に「メビウスリング」が、
光造形モデルとそのワイヤーフレームがあります。
右は同じ「メビウスリング」をテープを一点で表裏逆に一回すれば、
テープ真ん中線上で切断するとそのテープは大きくなるだけです。
ところが、2点で表裏を逆・逆として切断すると、
リングは二つに分断されて二つのリングが鎖になります。
試してみて下さい。
これは「手品」にして見せることができます。
これまでの話を理解する必要があります。
そうすると、ラインで面を造ることが出来ますが、
そのラインを話題の3Dプリンターで0.6mmのラインを射出させながら、
たとえば、中央下の「ハイヒール」を造るとしたら、
どのように形をライン書きから、
「一筆書き」していくことが出来る時代になったようです。
3Dプリンターは、確実にインターネット上で
真っ当な展開をしてくれることを願うばかりです。
私が心配しているのは、インターネットがこのままの資本主義では、
相当に無理があるでしょう。
しかし、時代は良貨は悪貨を駆逐するという人間界の癖があります。
私の癖は、私の人生において、
この癖に最も喧嘩を挑んでいます。


目次を見る

「3Dプリンターの真実と真贋を見分ける!」


   


     4月 28th, 2013  Posted 12:00 AM

光造形システムを知らないユーザーに警鐘を与えておきます。
安価であろうが高額な装置であろうが、
真実で真贋を見極められる「技」がなんとしても必要です。
この画像を見て、3Dプリンターの機種、
当然ながら市価が区別出来ることが真贋を決定できるでしょう。
光造形システムから3Dプリンターという系譜で、
何が可能になってきたかを知る人以外は、まさかこれが出来るとは・・・、
ということになるでしょう。
これらの現物が出来る人物は、
たった一人しか日本には居ないと思います。
最近、TVや雑誌にしても、この人物だけが真実を成し遂げています。
今日知りました。彼とは面識があったそうですが、
今は個人情報もあることから、Mさんだけが可能ですと断言します。
3Dプリンターがあの「MAKERS」という著者の指摘は当たっています。
ただし、彼の思いが本当はどこから今日にいたったかは
何人かが牽引していく必要があるでしょう。
これからの日本の産業構造を変えるには、
私はYさんとMさんがそのリーダーになると確信しています。
もちろん、私自身も1996年には、
彼らが居てくれたからデザイナーとして出来た経験があります。
一昨日私は、「クラインボトル」の形態と擬似形態、
そして空間論・言語論・形態論の可能性を提示しなければと記載しました。
昨日は、この画像の現物をじっくりと見ながら、
1980年代後半に、
私が、プリンストン大学と共同研究していた「歯車」を米国で再び見た思いです。
今や廉価であっても「技」が必要だから「革新の技術」が必要です。
なんと言っても見ていただきたいのは、
TOKYO Maker」のwebsiteです。
なぜ、3Dプリンターが自宅のキッチンに置いてあるのでしょうか?
私は、名古屋市立大学時代は、
おそらく最高の「光造形システム」がレーザー違いで二台在りました。
しかし、当時はその部屋に入ることは避けていました。
危ないと思っていたからです。
つまり、3Dプリンターが世界を革新することは確実ですが、
それを何としても成し遂げるのは
この日本からに絶対にしたいと思っています。
Mさん、Yさん、これからもよろしくお願いします。
私のノウハウはすべて提供します。


目次を見る

「基本はトポロジーの形態が出来るかだった」


   


     4月 27th, 2013  Posted 12:00 AM

光造形システムでこれが可能だろうか、
という私の直観は、フィラデルフィア大学の
Eminent Scholarと呼ばれていた元医学部の名誉教授たちの質問でした。
確かに、トポロジー、日本では「位相空間」という数学思考の形態でした。
私はトポロジーを位相空間と翻訳する大間違いに気づきました。
以後、私は空間は元来、形態であり言語だと考えてきました。
つまり、
  ・点には形が無い
  ・線には太さが無い
  ・面には厚さが無い
これらが数学的な想像力で、
場の近傍性=トポロジーということになりました。
ところが、
あるアーティスト(「点・線・面」の著者/カンディンスキー)が、
「点とは必ずこれは正方形になるといづれ理解される」。
この予測に心を惹かれました。
  ・点はピクセルを単位とする
  ・線はピクセル設定で太さが出来る
  ・面は、そうした線の太さで厚さが生まれる
このことを、当時のIDEAS(3D-CAD)でSLAデータにしましたが、
「クラインボトル」には厚みがあっても、サポーター設定が困難でした。
しかし、サポーター設計が光造形の決め手になることで、
確実に厚さがある「クラインボトル」=擬似形態が出来ました。
それから光造形形態を「トポロジー空間」と呼ぶことで、
3Dプリンターはサポーター無しで、
いわゆるレイヤー=面を積層することで、
言語→形態→空間設定がいわゆる編み目表現を可能にしました。
したがって、あくまでも見た印象は「クラインボトル」でも、
光造形と3Dプリンターはまったく異なります。
ただし、この編み目そのものが管=パイプになったとき、
それはトポロジーという数学的思考は、
デザイン的思考となり、素材がパイプになれば、
それこそ、トポロジー空間論は完成するでしょう。


目次を見る

「3Dプリンターの素材と成型精度」


   


     4月 26th, 2013  Posted 12:00 AM

光造形システム、私は17年携わってきて、
最初は紫外線レーザーが半導体レーザーに変わりました。
そして、エポキシ系樹脂も、
最初の湿度管理と装置からとても簡便になりました。
素材も、特に医療系は光造形データはシリコン系でも、
ほとんど内臓器官同様の柔らかさで「手術前シュミレーション」にまで、
使えるようになりました。
そして、今、阪大ではデザインのモックアップと
医療関連のスキャナデータを再現するのに使っています。
最大の問題は「造形サポート」設計がデメリットでした。
ところが、3Dプリンターでは、
2000分の1まで回路造形では可能になってきました。
しかし、私は「素材問題」はまだまだ開発が望まれると考えています。
チタンとカーボンもありますが、
カーボンは粉末ではなくて、やはりテキスタイルとしての繊維状成型です。
とりあえず、画像表現されている素材毎の成型は可能になっています。
しかし、私はこの素材提案には新たな感性が必要だと思っています。
何が3Dプリンターの素材かというと、
これまでの素材開発メーカーでは無理がありそうです。
現在私が必要と考えている素材は●●●です。
これは提案されてから具体的な応用範囲が限られていたから無理でした。
しかし、私には目論見があります。
なんとか、素材メーカーに具体物を持ち込んで説得しなければなりません。
画像は海外で試行された素材ですが、
これらの欠点はすべてがソリッド=塊です。
これは光造形がソリッドで考えられた頃と、
同次元の発想が残存しているからです。
3Dプリンターはサポートが無いだけに、
2Dへの吹きつけそのものを変換すべきだと考えています。
ただ、大きな問題は、これからの成形物は、
なんらかの清潔感や耐菌性や耐放射能までが考慮されるべきです。
まずは、「素材、その射出形状のデザイン」が基礎になるべきでしょう。


目次を見る

「光造形から3Dプリンター時代に来ただろうか」


   


     4月 25th, 2013  Posted 12:00 AM

1988年代だっと思います。
ニュージャージーで光造形の「歯車」が私に大衝撃でした。
夏毎に2回、トロントで3D-CADの個人レッスンを受け、
必ずこの時代!がデザインを変革すると確信したのです。
そして、名古屋市立大学芸術工学部新設時に、
「光造形システム3D-SYSTEM」を、
研究室に相当な高額で入れてもらいました。
トポロジー形態を空間論として造形と成型し、
ニューヨークとフィラデルフィア大学で、
プレゼンをしたのが世界でも最初で、
トポロジー形態はトポロジー空間論としてデザイン化を要請されました。
しばらくして、貧弱な形式の3Dプリンターが登場しました。
当時、光造形も素材問題(湿度管理)がありましたが、
3Dプリンター素材は、手の平の熱でも溶解する程度のモノでした。
私はいち早く、「MAKERS(原書)」を読みましたがかなり眉唾でした。
案の上、オバマ大統領に吹き込んだ連中がいたのでしょう。
彼は夢を語りましたが、「方向は間違っています」。
3Dプリンターが低額になると、誰でも出来るという話が広がっています。
NHKも番組広報を初めていますが、彼らも真実は見抜いているでしょう。
本当に使える人は国内では限られていることは真実です。
光造形は「サポート」といって、造形物を支える要領が難しく、
名市大時代の大学院では、この修了制作と修士論文が相当あります。
光造形はすでに一つの役割を終えていると思いますが、
3Dプリンターでも、
「編み目」や「アモルファス」的な造形が可能になりました。
すでに、住宅どころか宇宙空間でのモノづくり手法が見えてきました。
間違いなく、データがあれば、自宅の3Dプリンター機能によって、
相当なモノができる、できるかもしれない段階に入ってきているでしょう。
そして、この時代を引き込むのは、
確実に「デザイン」が中心になるでしょう。
すでに、こうした画像のデータはEコマースで取引されだしました。


目次を見る

「デザイン領域の拡大・トポロジー空間論の再設定」


   


     3月 1st, 2013  Posted 12:00 AM

トポロジーは、トポス=場所を原意にしています。
そこからトポロジー=位相空間と訳されていますが、
元来、訳語への疑問を持つことが学域のスタートです。
したがって、人間・時間・空間に対して、
位相空間(論)は訳語に実務性が皆無だと断言できます。
私は、デザイナーとして「モノ=人工物」設計実務としては、
「空間」の設定、その中でのトポロジーへ時間を組み込んだ設計、
実務として、空間=身体内部ととらえ、
その中での心臓や内臓物へのプロダクトデザインを意識し始めました。
具体的には、初期の3D-CADでは、
トポロジーでの形態設計ができなかったからです。
しかも、
その設計を光造形システムをトロントのALIAS社で学びました。
当時、7000千万円するIRIS3030も二台導入しました。
理由は、三つあったと想い出します。
まず、3D-CADでトポロジー形態がデザイン設計できるかもしれない。
そうなれば、光造形は2次元から3次元になるだろう。
今や、気がつけば6次元CADが完成しています。
だから、この思いは予測していたことになります。
多分6D-CADの実物を見ている人は限られていますが、
実働しているモノを見れば、そこに未来の技術設計があります。
あきらかに、トポロジーは形容詞ではなく、名詞として、
「空間」設計に導入されることになります。
大阪大学大学院では、本図の4D-CADのように、
「空間 – 立方体=身体のメタファ」内に
「トポロジー=内蔵=DNAへの「時間」が関わります。
5D-CADはウォルト・ディズニー社で動き始めたと同時に、
わが国のあるメーカーで6D-CADが実働していました。
おそらく、次世代デザイナーに期待するのは、
デザイン実務=デザイン設計には、
多次元CAD実務を果たしてほしいのです。
これも私が次世代に言い残すことになるでしょう。


明日、「最終講義」後、
パリに行ってフランス芸術大学と阪大での研究目標をプレゼンしてきます。
しばらく、本BLOGは休筆することになるかもしれません。


目次を見る

「シリコングラフィックスを使っていた頃」


   


     9月 19th, 2012  Posted 12:00 AM

「コンピューターの時代が来る」、
この予測は東京から福井にもどった1980年だったと思います。
Apple IIj・Apple IIcから1984年Macintosh 128kと同時に、
UNIXに出会います。UNIXも二つのバージョン共存時代です。
ちょうど、福井銀行がNew York支店を開設するので、
そのインテリアデザインと海外C.I.に関わりました。
「川崎さん、お金は使っても大丈夫ですから」。この一言で、
私はIRIS3030をニュージャージーのSGIブランチで発注しました。
当時で7000万円でした。日本では1億4000万円だと知っていました。
その頃は、Apple製品でも米国のコンピューターは2倍していました。
銀行はとても驚いたようでしたが頭取決裁で、
私はなんと2台を7000万円で手に入れたのです。
「日本からは商社マンしか来ないが、
クリエーターが買ってくれるなら宣伝で2台持って帰っていい」と
副社長が決断してくれました。
福井と東京にIRIS3030を置きました。
そして福井 – 東京に特別回線まで引いたのです。
当時のこの詳細をもっと記録しておくべきでした。
日本政府は「シグマ・プロジェクト」をスタートさせていました。
私は成功するはずがないと思っていました。案の上失敗しました。
EWSが必要だったのは、 
3D-CADと光造形システムを自分でやってみたかったからでした。
運良く1996年に、
名古屋市立大学芸術工学部が新設され私は大学人になりました。
コンピューター環境の購入やネットワーク構築の担当になりました。
そこで、シリコングラフィックス社のindigo・Indigo2・Onyx・Octaneと
新製品発売毎に新規にしていくことができました。
芸術工学部の1, 2, 3期生は、これだけの環境が整っていましたが、
気づいていた学生は僅かだったはずです。
トヨタ自動車が初めてEWSの使えるデザイナー募集を一回だけ行いました。
その時の機種はOctaneでした。
このOctaneではUnigraphicsが走りました。
I-deas・ CATIA ・Pro/ENGINEERでは
「メビウスの輪」の作成が困難でした。
しかし、Unigraphicsは当時はほぼ万能と思える3D-CADでした。


目次を見る